Domain Dynamics in a Ferroelastic Epilayer on a Paraelastic Substrate

نویسندگان

  • Y. F. Gao
  • Z. Suo
چکیده

This paper models the domain dynamics in a ferroelastic epilayer within the timedependent Ginzburg-Landau (TDGL) framework. Constrained on a paraelastic substrate of square symmetry, the epilayer has rectangular symmetry, and forms domains of two variants. The domain wall energy drives the domains to coarsen. The spontaneous strains induce an elastic field, which drives the domains to refine. The competition between coarsening and refining selects an equilibrium domain size. We model the epilayersubstrate as a nonequilibrium thermodynamic system, evolving by the changes in the elastic displacements and the order parameters. The free energy consists of two parts: the bulk elastic energy, and the excess surface energy. The elastic energy density is taken to be quadratic in the strains. The surface energy density is expanded into a polynomial of the order parameters, the gradients of the order parameters, and the strains. In this expansion, the surface stress is taken to be quadratic in the order parameters. The evolution equations are derived from the free energy variation with respect to the order parameters. The elastic field is determined by superposing the Cerruti solution. Examples of computer simulation are presented. @DOI: 10.1115/1.1469000#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferroelastic domain switching dynamics under electrical and mechanical excitations.

In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroel...

متن کامل

Flexoelectricity , incommensurate phases and the Lifshitz

The solutions for the minimizers of the energy density f (q, p) = Aq2 + Bq4 + p2 + gA,B + ( ) β κ − + | | + | | ′ ′ ′ ′ q p p q q p 2 2 describe the flexoelectric effect with a flexoelectric coupling coefficient β. The order parameters q and p can be visualized as strain and polarisation, respectively. The parameter κ denotes the ratio of intrinsic length scales for q and p. We show that the st...

متن کامل

Effect of poisson ratio on cellular structure formation.

Mechanically active cells in soft media act as force dipoles. The resulting elastic interactions are long ranged and favor the formation of strings. We show analytically that due to screening, the effective interaction between strings decays exponentially, with a decay length determined only by geometry. Both for disordered and ordered arrangements of cells, we predict novel phase transitions f...

متن کامل

Ferroelastic domains in bilayered ferroelectric thin films

We investigate theoretically ferroelastic domain fractions in a heteroepitaxial bilayer consisting of 001 tetragonal PbZrxTi1−xO3 and 001 rhombohedral PbZr1−xTixO3 on a thick 001 passive substrate as a function of the lattice misfit strain between layers and the substrate. By considering the self-strain in each layer and the indirect elastic interaction between the layers, we provide a numerica...

متن کامل

Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3.

Resonant piezoelectric spectroscopy shows polar resonances in paraelectric SrTiO3 at temperatures below 80 K. These resonances become strong at T<40  K. The resonances are induced by weak electric fields and lead to standing mechanical waves in the sample. This piezoelectric response does not exist in paraelastic SrTiO3 nor at temperatures just below the ferroelastic phase transition. The inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002